A method for reaction luminosity determination in a storage ring

Y.M. Xing,¹ T. Davinson,² J. Glorius,¹ B. Jurado,³ C. Langer,⁴ C. Lederer-Woods,⁵ Yu. A. Litvinov,¹ R. Reifarth,⁴ Z. Slavkovská,⁴ T. Stöhlker,⁶ L. Varga,¹ and P. J. Woods²

¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, 64291, Germany

²School of Physics & Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK ³Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG),

CS 10120, F-33175 GRADIGNAN Cedex, France

⁴Goethe Universität Frankfurt, Max-von-Laue-Strasse 1, 60438, Frankfurt am Main, Germany
 ⁵School of Physics & Astronomy, University of Edinburgh, Edinburgh, EH93FD, UK
 ⁶Max-Planck-Institut f
ür Kernphysik, Heidelberg, 69117, Germany

Reactions induced by charged-particles play an important role in the research of explosive scenarios in astrophysics. The energy range for the Gamow window of these reactions under astrophysical conditions is around only a few MeV or less. For such low-energy reaction cross-section measurements performed at a storage ring, background due to Rutherford scattering is typically an obstacle. However, the known distribution of this fundamental scattering process can be employed for *in situ* determination of reaction luminosity, which enters directly into the cross-section calculation and is a crucial parameter in the experiments.

We propose a method to simulate the realistic scattering distribution for a specific detector geometry. By comparing the simulation and experiment, the luminosity can accurately be extracted. This method provides a reliable way to measure the luminosity. It is especially useful if the luminosity determination through other methods is complicated or impossible.